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1 Abstract

We researched and analysed the behaviour of the Lorenz attractor
by using the Lorenz equations on Mathematica[1] and Grapher[2]
on MacOS. By first understanding the idea of chaos and an ’at-
tractor’ we plotted graphs ranging from simple attractors to the
more complex Lorenz Attractor. We concluded that the Lorenz
system of equations will always have an attractor. Upon placing
particles in the system we saw that it is a global attractor when
ρ < 1 and the particle will always tend to a point; if ρ > 1 it is a
strange attractor and the particle will always tend to a surface.
In particular we investigated the time taken for two trajectories
to diverge significantly for a Lorenz attractor as a function of the
closeness of the start points: to find the dependence of the ini-
tial starting positions on the time taken to diverge significantly
we wrote a script in Mathematica that computes the time taken
for the two norm of the trajectories to reach a unit length of
1 for a range of small displacements in the y-axis. We showed
that the initial displacement of the point s and time t taken to
diverge has a negative exponential relationship. To prove the
chaotic behaviour we first researched the relationship to fractals
and by finding its fractal dimension using the Hausdorff equation
to be 2.06± 0.01 we found that the attractor is strange so it may
have chaotic behaviour; we found that the Lyapunov exponent
could be used to prove if the Lorenz attractor was chaotic by
determining how sensitive the Lorenz attractor is to initial condi-
tions. It is very sensitive to the initial conditions as the exponent
was λ = 0.913616 and so it is chaotic as it is a positive value.
Non-chaotic behaviour was shown when ρ < 1 and we found the
Lyapunov exponent to be λ = −1.27387 supporting the argument
that it is not chaotic for this value as the exponent is negative.

2 Introduction

Deterministic chaos, or more simply chaos, and strange attrac-
tors like the Lorenz attractor are part of a subject known as
Dynamics.[3] This is the subject that deals with change and sys-
tems that evolve in time. Chaos theory represents a set of tech-
niques for analysing dynamic systems that follow apparently sim-
ple rules leading to behaviours which depend only upon their ini-
tial conditions and yet are very sensitive to slight changes in the
input. Examples of dynamic systems include: fluid dynamics;
population analysis; economic behaviour; the weather. Despite
knowing a great deal about all the elements that constitute phys-
ical patterns we have only been able to predict the outcomes of
these systems with modest accuracy. The theory of chaos was
summarized by the American meteorologist Edward Lorenz as:

Chaos: When the present determines the future, but the
approximate present does not approximately determine the
future.[4]

Chaos theory may provide insight into the workings of these

complex dynamic systems.[5] When we look within the appar-
ent randomness of chaotic complex systems, there are underly-
ing patterns, loops, repetition, self-similarity, fractals and self-
organization.[6] By understanding how these underlying patterns
work we can have a greater understanding of chaotic systems.
Advances in understanding these systems could lead to having a
greater understanding of the physical world and designing tech-
nology that interfaces with complex dynamic systems.

In 1961, Lorenz found another example of chaotic behaviour.
While researching convection Lorenz developed a system for pre-
dicting the weather based on 12 differential equations. The equa-
tions represented the factors we know to affect weather patterns,
including pressure, temperature, and wind velocity. When he
computed these equations Lorenz found that by making very
small changes in the initial numbers used in these equations, he
could produce wildly different results.[7]

Then in 1963, Lorenz developed a simplified mathematical
model for atmospheric convection [8] which is a system of three
ordinary differential equations, known as the Lorenz equations,
showing velocities in three dimensional space:

dx

dt
= σ(y − x), (1)

dy

dt
= x(ρ− z)− y, (2)

dz

dt
= xy − βz (3)

By changing the values of the constants σ, ρ and β in equations
1, 2 and 3 we can model a range of systems that are both complex
as in Fig.1 and complex as in Fig.2 which is the Lorenz attractor.

Figure 1: Simple attractor plotted using Grapher software.
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Figure 2: Lorenz attractor plotted using Grapher software.

The Lorenz attractor is one of many examples of a strange
attractor which exhibit chaotic behaviour.[14]

We used Mathematica for mathematical analysis and graphing
of properties and used the Grapher software (MacOS) for visual
graphics of the systems as it had a more clear and dynamic visual
representation of attractors.

3 Analysis of Attractors

3.1 Simple Attractors

Before we can understand the behaviour of the Lorenz Attractor
and its workings we must define what an attractor is: an attrac-
tor is a state or behavior toward which a dynamic system tends
to evolve, represented as a point or orbit in the system’s phase
space. We consider the system to be stable when it is within the
attractor’s area[9]

A simple attractor was developed by using the Lorenz system
of equations 1, 2 and 3 and for values of ρ < 1 there is only one
stable point, which is at the origin. This point corresponds to no
convection. All orbits converge to the origin, which is a global
attractor, when ρ < 1.

Figure 3: Simple attractor stable at the origin when ρ < 1 using
Grapher software.

As we increased the value of ρ to ρ = 1 a bifurcation occured.
A bifurcation is when a small smooth change made to the param-
eter values of a system cause a sudden topological change in its
behaviour.[17].

Figure 4: Close up of a bifurcation when ρ = 1 for a simple
attractor near the origin using Grapher software. (The general
shape of the attractor is similar to Fig.1).
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When ρ > 1 the system converges to a point on a surface in
space and the system is considered to be a fixed point and not
chaotic or unpredictable.

Figure 5: An attractor converging to a point in space when ρ > 1
using Grapher software.

Figure 6: A vector field of an attractor converging to a point in
space when ρ > 1 analogous to Fig.5 using Grapher.

As demonstrated attractors act much like orbits towards a cer-
tain point.

3.2 Strange Attractors - The Lorenz attractor

The Lorenz attractor is formed from the system of equations 1,
2 and 3. When ρ > 1 the system will become a strange attractor
with 2 critical points in 3 dimensions. The points define the
surfaces on which the attractor revolves and are described by
equations 4 and 5.[15]

(−
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1)) (4)

(
√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1) (5)

When the particle is placed in the system it will rotate around
the points in equations 4 and 5 when it is in its stable state.
This is dependent on β and ρ and so changing the constants that
define the surfaces of the attractor will change the way in which
a particle will rotate; this changes the shape of the attractor. We
demonstrated that the equation describes the critical points by
plotting the trajectory of the system and the critical points on
the same plot.

Figure 7: Graph plotted by Grapher to show the critical points
for a Lorenz attractor.

The mid point of the critical points are always the same for
any constant since the two equations are symmetric in x, y and
z. Distance between critical points have been investigated by
plotting the distance between the critical points over change in
ρ and β shown in Fig.8, Fig.9. Fig.8 shows that the distance
between the two critical points become zero when rho is 1 and no
real solution exist when it is less than 1.
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Figure 8: Graph plotted on Mathematica showing the distance
dependence on ρ whilst β is kept constant at 1

20 40 60 80 100
beta

20

40

60

80

100

distanec between two critical points

Figure 9: Graph plotted on Mathematica showing the distance
dependence on β whilst ρ is kept constant at 2

Stable convection can only occur for positive ρ if σ > β + 1.
At the critical value of σ = β + 1, both equilibrium points lose
stability through a Hopf bifurcation.

Figure 10: Graph plotted on Grapher demonstrating the sudden
change caused by Hopf bifurcation

When we increased the distance that the particle is placed away
from the attractor we found that it spiraled until it reached the
area of influence of the attractor. The particle is considered to
be unstable until it reaches the area of the attractor. This is
demonstrated by Fig.10.

Figure 11: Graph plotted on Mathematica showing the spiraled
effect of the trajectory before reaching the attractor surface

Figure 12: Grapher plot to show the unstable state of the Lorenz
attractor where particles start at different points.

We concluded that the Lorenz system of equations 1, 2 and
3 will always have an attractor. Upon placing particles in the
system we saw that if the system is a global attractor then the
particle will always tend to a single point; if it is a strange at-
tractor then the particle will always tend to a surface.

4 Chaos

4.1 Fractal Relationship to the Lorenz Attrac-
tor

By definition chaotic systems are systems that are sensitive to
their initial state. To understand the chaotic nature we first
looked at fractals. A fractal is an object that has the following
properties: a never ending pattern; infinitely complex; self simi-
larity; having a fractal dimension. This means zooming in on a
small region of a fractal leaves you looking at the same shape you
started with and smaller parts of the fractal can look exactly the
same as the whole fractal shape [10]. Famous fractal patterns in-
clude the Sierpinski triangle and Mandelbrot set. Understanding
the fractal dimension was vital to understanding the chaos of the
Lorenz attractor: a fractal dimension is a dimension that is in-
between dimensions so not 1D, 2D or 3D but in-between i.e.1.3D.
There are many fractals in nature such as the brain, trees and
lungs. A fractal dimension can be computed using Hausdorff’s
dimension equation 7 [11].

D = 2 +
λ1 + λ2
|λ3|

(6)

D = Kaplan-Yorke dimension
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Figure 13: Example of a fractal - Sierpinski triangle

λi = Lyapunov exponent for dimension i

D =
Log(N)

Log( 1
r )

(7)

D = the dimension
N = the number of smaller copies
r = the scale factor that the smaller copies are scaled down by.

The Lorenz attractor has a Kaplan-Yorke dimension of 2.06
±0.01 which means that the attractor is a fractal and therefore
it is strange. Therefore the Lorenz Attractor exhibits properties
of fractals.

4.2 Chaotic property

In the Lorenz system of equations the trajectory of the particle
in the system has a sensitive dependence on the initial starting
positions. Therefore we investigated the time taken for two trajec-
tories to diverge significantly for a Lorenz attractor as a function
of the closeness of the start points. We first demonstrated that
the system is sensitive to it’s initial position by simulating the
divergence of two trajectories, with initial positions displaced by
0.0001, using Mathematica as shown in Figure[14].

Figure 14: Two trajectories diverging in the x,y and z axis after
t=30. The initial position of the blue particle:[0,1,0] and the red
particle:[0,1.0001,0]. System constants are ρ = 26.5, σ = 3 and
β = 1, using Mathematica.

To find the dependence of the initial starting positions on the
time taken to diverge significantly we wrote a script in Mathe-
matica that computes the time taken for the two norm of the
trajectories to reach a unit length of 1 for a range of small dis-
placements in the y-axis. This is shown by Fig[15] shows that this

time taken to diverge has a negative correlation over the initial
displacement; it resembles an exponential shape. Fig[16] is the
Log(t) where t is the time taken to diverge over the initial dis-
placement; it resembles a straight line. This hints that the initial
displacement and time taken to diverge has a negative exponen-
tial relationship.
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Figure 15: Time taken to diverge over initial displacement graph,
using Mathematica.
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Figure 16: log of time taken to diverge over initial displacement
graph using Mathematica.

In order to prove that it is a chaotic system we measured the
Lyapunov exponent of the lorenz attractor. The Lyapunov ex-
ponent is the measure of rate of separation of trajectories and is
defined by equation[6].

[16]

λ = lim
n→inf

1

n

n∑
i=1

1

ti − t0i
ln| di

d0i
| (8)

λ = Lyapunov exponent
ti = resultant time
t0 = initial time
di = resultant distance between two trajectories
d0 = initial distance between two trajectories

d/d0 ≈ eλ(t−t0) (9)

From equation[14] we can see that equation[15] is true. Using
equation[15] we plotted Logfracdd0 over (t − t0) to find the
Lyapunov exponent λ of the Lorenz attractor when ρ is greater
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than 1. We found the gradient, λ, to be 0.913616 for the con-
stants of σ = 28 ρ = 10 and β = 8/3 at the initial position of
(-2.8371821627048677, 0.4841789164422333, 24.15832288560378)
and (-2.8371821627048677 + 0.0001, 0.4841789164422333,
24.15832288560378). These initial positions were used to reduce
the time for the particles to approach the surface of the attractor
and so reduce computational power needed.

Figure 17: Lyapunov exponent of a chaotic Lorenz system with
positive gradient, which means that the two trajectories are di-
verging, using Mathematica.
We found the λ to be -1.27387 for a system with the constants

and initial position set to the same values as in Fig[17] except σ
was set to be 0. We also showed that Lorenz system with σ less
than 1 had λ less than 0 and therefore it is not a chaotic system

as shown by Fig[18].

Figure 18: Lyapunov exponent of a simple Lorenz system with
negative gradient, which means that the two trajectories are con-
verging, using Mathematica.

Notice in fig[18], the gradient steadily decreases. This is be-
cause the of rate separation of trajectories decreases over time
and would no longer have a net positive or net negative change
when it is at it’s ”maximum chaotic point”. The sensitivity of the
Lorenz attractor to the initial conditions and the relationship to
fractal dimensions has proved that the Lorenz attractor is indeed

chaotic.

5 Practical applications of chaotic sys-
tems

The unique properties of a chaotic system is that it can be diffi-
cult to predict the resultant state for different initial states due
to its sensitiveness. This is a very useful property since it can be
used to generate series of numbers that appear as if it is random
and is independent of any condition. It is important to empha-
sise that these series of numbers are not truly random since they
will output the exact same values for the same initial conditions
but if these initial conditions are even slightly different, they will
output a drastically different value.
Used in medicine physics [17]. Found out that Cardiac rhythm is
sensitive to initial reactions and is also a fractal. High heart rate
means the heart is less likely capable to adapt to commands which
leads to heart attack liability. Additionally, for brain treatments.
Related by electroencephalographic(EEG) electrical activity in
the brain. A healthy brain has high EEG and when resting you
will have low EEG. Found that EEG is a strange attractor. Has
resulted in developing treatment for a coma.
In weather prediction the fractal structure could be plotted us-
ing a computer with many iterations to find periodic orbits with
high accuracy essentially helping to predict the unpredictable and
complex phenomena seen in the weather and other complex sys-
tems.
There are many more such examples of uses of chaos in the world
as it allows us to predict complex and seemingly impossible sys-
tems.

6 Conclusion

We researched and analysed the behaviour of the Lorenz attractor
by using the Lorenz equations on Mathematica[1] and Grapher[2]
on MacOS. By first understanding the idea of chaos and an ’at-
tractor’ we plotted graphs ranging from simple attractors to the
more complex Lorenz Attractor. We concluded that the Lorenz
system of equations will always have an attractor. Upon placing
particles in the system we saw that it is a global attractor when
ρ < 1 and the particle will always tend to a point; if ρ > 1 it is a
strange attractor and the particle will always tend to a surface.
In particular we investigated the time taken for two trajectories
to diverge significantly for a Lorenz attractor as a function of the
closeness of the start points: to find the dependence of the initial
starting positions on the time t taken to diverge significantly we
wrote a script in Mathematica that computes the time taken for
the two norm of the trajectories to reach a unit length of 1 for a
range of small displacements in the y-axis. We showed that the
initial displacement of the point s and time taken to diverge has a
negative exponential relationship. To prove the chaotic behaviour
we first researched the relationship to fractals and by finding its
fractal dimension using the Hausdorff equation to be 2.06± 0.01
we found that the attractor is strange so it may have chaotic be-
haviour; we found that the Lyapunov exponent could be used to
prove if the Lorenz attractor was chaotic by determining how sen-
sitive the Lorenz attractor is to initial conditions. It is very sen-
sitive to the initial conditions as the exponent was λ = 0.913616
and so it is chaotic as it is a positive value. Non-chaotic behaviour
was shown when ρ < 1 and we found the Lyapunov exponent to
be λ = −1.27387 supporting the argument that it is not chaotic
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for this value as the exponent is negative. We have therefore con-
cluded that chaos theory is a vital field of research that allows us
to predict complex and seemingly impossible systems.
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